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Introduction

The study of sectional curvature has long been one of the most crucial
subjects since it provides information about certain characteristics of
manifolds. In the framework of Riemannian geometry, almost S-manifolds
(of dimension 2n+s) represent a natural generalization of contact and
Sasaki manifolds , Such manifolds have been extensively studied by several
authors and from different perceptives.

Objective of the talk

In this presentation we study Walker manifold with neutral signature in
dimension four endowed with a locally conformal change s-structure.
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S-manifold and locally conformal s-manifolds

A (2n + s)-dimensional Riemannian manifolds (M, g) endowed with an
¢-structure where ¢ is a (1,1)-tensor field of rank 2n satisfying ¢3 + ¢ =0
is a metric ¢-manifolds if there exists s global vector fields &1, -- ,&s on
TM called structure vector fields such that, their respective dual 1-forms
M, ,"s verifies

S
$Li=0,m0¢=0¢=—-1+> 0o
i=1

g(pX,0Y) = (X, Y) = > n'(X)n'(Y), (1)
i=1

forany X, Y € X(M)andi=1,---,s.
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Let ® be the 2-form on M defined by ®(X, Y) = g(X,¢Y) for any
X,Y € X(M), then it is clear that 1 A -+ Ans A ®" is a volume form
therefore M is orientable. The Nijenhuis tensor Ny is then given by

N(-,-) = [6,0] +2)  dn' ®&;.

i=1

Hence, M is normal if N vanishes

A metric ¢-manifold is said to be a K-manifold if it is normal and d$ = 0.
A K-manifold is called an S-manifold if & = dn;, forany i€ I C N. It A
necessary and sufficient condition for a K-manifold M to be an S-manifold
is

(Vxo)Y = {&(6X,0Y)& +mi(Y)$* X}, (2)

i=1

where V is the Levi-Civita connection of g. By a direct calculation we have

Vx&i = —¢X, X € (M) (3)
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for an S-manifold. As immediate properties we have:
i) The orthogonal splitting of TM as TM = Im(¢) @ ker(¢).
i) Ve, =0, ae{l,...,s}
i) Ve, £ =0, a,8 €{1,...,s}
We shall denote D = Im(¢) and D+ = ker(¢) = {¢1, ..., &s -
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Locally conformal S-manifolds

Let M be an indefinite globally framed f-manifold and (¢, &;,7', g) its
globally framed f-structure. The manifold (M, ¢, &, 1", g), i € {1,...,s} is
said to be locally conformal S-manifold if M has an open covering {U;} ¢/
endowed with smooth functions

ot : Uy — R such that over each U; the globally framed f-structure

(¢t7 511‘7 77;'7 gt) deﬁned by
b = b, i = exp (=)', & = exp(0¢)&i, g = exp(—20¢)g  (4)

is S-manifold. That is M is called locally conformal S-Manifold if for each
t, (Us, ¢, £, mi, g¢) is a S-Manifold.
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It is well known that for any conformal transformation o on open covering
{o+} the equality

V&Y =VxY —w(X)Y —w(Y)X + g(X,Y)B, (5)

holds. Where w = do called Lee 1-form and B its g-dual vector field, that
is w(X) = g(B, X).

In a locally conformal s—manifold one has

(V@)Y = exp(=0)lg(¢X,0Y)E+T(Y)°X] +w(8Y)X — w(Y)pX
— g(X,0Y)B +g(X, V)68, (6)
where 7 = Y5, 7' and £ = > ;_; &, which implies that V§&F = —oX

and that ker(¢) is an integrable flat distribution. We remark that an
indefinite S—manifold is never flat since K*(X,{f) = ¢; for any X € D,.
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Considering the tensor fields h on M by 2h;X = (V¢,¢)X — n/(X)¢B
Clearly, we can see that in each open covering U;, hX = —e™%t¢X, hence
it is easy to check that h;§; = 0, h¢ = —¢h and trace(h;) = 0. Since

hlfg = hzfl =0 then B = Vglf + w(£)£1 = V&f + w(£)§2

Let (M, &,n', g) be a locally conformally s-manifold. The Lee vector
field belongs to the distribution D=.

Let (M, ¢,&i,ni,g) an indefinite globally framed f-manifold. The
following statements are equivalentes

(i) The manifold (M, ¢, &;,n;, g) is locally conformally s-manifold

(ii) There are functions f*, a € {1, ..., s} such that the Lee form
satisfies w = f,n®

(i) (Vx@)Y =
—e*(g(¢2X, Y)E = T(Y)82X) + F(g(6X, Y)6a = 1a(Y)9X)
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Four dimensional Walker manifolds

Let (M, g) be an n-dimensional semi-Riemannian manifold, and V the
Levi-Civita connection on M. If D is a distribution on M, naturally D+,
D + D+ and RadTM = D N D+ are also distributions on M and D + D+
need not be equal to TM and RadTM need not be trivial since this
depends upon the degree of nullity of D.

Definition

The distribution D is parallel with respect to the Levi-Civita
connection on (M, g) if for any vector field X of D, VX takes values in
D. Moreover, if D is totally null the manifold M is called Walker
manifold.
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[1] A canonical form for a 2n dimensional pseudo-Riemannian manifold
M admitting a parallel field of null n planes D is given by the metric
tensor:

@=| g5 7]

where /d,, is the n X n identity matrix and B is a symmetric n X n
matrix whose entries are functions of the coordinates (xi, - , x25)-

According to the above theorem, the metric of four-dimensional Walker
manifold is expressed in local coordinate system (x, y, z1, z2) by

(gabc) =

O R OO
= O O O
0O v O
o 60 —= O

where a, b, ¢ are functions depending on x, y,z; and z.

AMaloko (UMNG) 11/29



Proposition

Let (M, g) be a Walker manifold. The conformal transformation of g
given by the equality (4) is not a Walker metric. There is a globally
linear connexion V of torsion free obtained by gluying up the
connexion V! of (5) and satisfies the relation

Vg=2w®ag. (8)
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Let (M, g) be a four-dimensional Walker manifold where the metric g is
given by (7) and w = do be the Lee 1-form which satisfies (8).
Using the christofeil formulas, the non vanishing components of the

connexion V are expressed by

%Xax = —2010x,

Voxdy = —020x — 019y,

%Xazl = (04 — co1 — boy +1/2¢1)0y — 0202,

6(%(822 =(—04+1/2¢1)0x — 01022,

63},8)/ = —20720y, %yazl = 1/2a20x + (03 + 1/2¢2)0y — 02021,
%yazz = (03 — ao1 — co2)0x + (1/2by — c101 — bo2)dy + 010z,
Vozn0z1 = (03 + aoy + coz)a + 1/2a3)0x + (04 — coy — bos)dy

+ (01 — 203 — 1/2a1)0z1 + (028 — 1/2a2)0zy,
Voz,0z2 = [(03 — ao1 — con)c + 1/2(acy + ccr — ¢3)] Ox

+ [(a — co1 + boa)c + 1/2(cc1 — by + ¢3)] Oy

+ (co1 — 04 +1/2¢1)0z1 + (03¢ — 03 — 1/2¢)02,
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V2,022 = [(03 — a0y — coa)b + 1/2(aby + cby + 2c4 — by)] Ox
+ [(03 — ao1 — co2)c + 1/2(cby + bby + ba)] Oy
+ (01b—1/2b1)0z1 — (02 — 204 — 1/2b3)0z (9)

The components of the connection V are easily obtained by vanishing of
the function o. _

The Weyl connection V is not symmetrical over all of its arguments.
Moreover it is not a Levi-Civita one but it coincides with the Levi-Civita
connection of g on ker(w). Thus the leaves of the distribution ker(w) are
integral submanifolds of M.
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Curvature properties

The following tensors are well known
R(X,Y)Z =VxVyZ -VyVxZ - VxyvZ
and

R(X,Y,Z, W) =g(R(X,Y)Z, W)

In the next section we give an example of four-dimensional locally
conformal walker S-manifold. We recall that the structure (g, ¢,&t,€%) is
locally conformal S-manifold on M if dij* = d7)? = ® and N, = 0 that is ¢
is normal. To this end, we make use of a orthonormal basis given in [1]

Ey = cOox + %(1 - b)@y + 0z, E3 = %(1 — a)aX + 0zy

Ey = —cox — %(1 + b)y + 0z, E4 = —%(1 +a)0x + 0z (10)
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Let (M*, g) be a Walker manifold and exp(c){E1, E», E3, E4} be the
g-orthonormal basis (10) with g = exp(—20)g, setting {; = e? E3 and
& = e? Ey, the tensor field ¢ given by

0 1 0 ©0
-1 0 0 O

¢= 0 0 0 © (11)
0 0 0 ©0

A straightforward calculation gives ¢?E; = —E; +n' @ €1 +1? ® €2 and
$’Ey = —E1 + 0 @ &1 + 12 @ &. Therefore, in terms of canonical basis
{0x,0y,0z1,02,} one gets

0o 0 0 —c
0o b 0 24
- 12
¢ o 0 0 0 (12)
0O -2 0 —b
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Then the second form fundamental is locally given by
® = be 27dz, A dy. (13)

The condition dif = ® for any / = 1,2 holds if we have the following
partial derivative equations

o1=02=04=a=0and b= —e%c.

Where 1t = dx + %(1 + a)dz; + cdz and n = dx — %(1 — a)dz; + cdz.
Clearly the conformal function o depends only z;. Thus the Lee
one-forme also its Lee vector field are obtained by

w = 03dz; and B = (03 — ka)Ox — kcdy + kOzi, k € R. (14)

We easily verify that h;0x = 0,
hidy = {e=?(7(&;) — 1) + 2bf1}0y — 4f10z, hj0z; = 0, for i = 1, 2 and
h0z = (a+ 1)e ?0x — 2ce %0z,

— = = — SaNe;
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Example

h20zy = (1 — a)ce™70x + 2ce™?0z; — 2e 7 0z.

Putting 0 = In z;, defined on the open neighbour

U={(x,y,z1,2), |z1 > 0 € R}. The Lee form is w = ledzl and B its
g-dual vector field obtained by B (— — a)0x — cdy + 0z;. From
equality (9), one gets the non-v: anlshlng components of the connection,
as follows 6,

%Xax = —219x, %Xay = —19y,Vo.0z =

(—ci+ 1/2c1)8y, Vox0za = (1/2¢1)0x — 822, 6,9),8)/ =0, 6(9),821
(1/2cQ)8y, Vay(?zz =(- al)Bx +(1/2by — a = )8y + 821, Vazlazl
((2)a?)ox+ (—ct)ay + (1)oz, Vozn02 = [(— ai)c—i— 1/2(ac1 + ccp)]|Ox +
[(—ci)c+1/2(cct — bea)|dy + (c: +1/261)dz1 + (—1/262)022, Vo, 020 =
[(—al)b+1/2(aby + cbo + 2cs — ba)]Ox + [(—al)c + 1/2(cby + bby +
ba)|0y + (Lb —1/2b1)0z1 + 1/2b;)0z.
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Some properties of ¢-sectional curvature

Let’s define the symmetric tensor field P by
1
P(Xv Y):(VXW)Y+CU(X)W(Y)—E‘B‘2g(X, Y)a (15)

then
P(E.8) = &w(®) + 2|BP. P =divB— (20— D|BP  (16)

Hence, the Riemannian curvatures are related by the means of (??) as
follows

e R(X,Y,Z,W)=R(X,Y,Z,W) +g(X, W)P(Y,Z) — g(X,Z)P(Y, W)

The Ricci and the scalar curvature are known respectively by
2n+s 2n+s
S(X,Y)=> R(E,X,Y,E)and 7= > S(E;, E) (18)
i=1 i=1

(see [10])

AMaloko (UMNG) 19 /29



Recall that K,(7) = Re(X. Y, X, ¥) where

Dp(m)
Ap(m) = gp(X, X)gp(Y,Y) — gp(X, Y)? #0.
Let M be a 2n + s-dimensional gff-manifolds. A 2-plane 7 of T,M is said
to be ¢p—holomorphic plane if 7 is orthogonal to D+ = span{&,--- ,&s}
and ¢(m) = 7. It is well known that a pointwise constant ¢-holomorphic
sectional curvature K(7) does not dependent on the choice of the
¢-holomorphic plane 7 of T,M and the function H defined by
H(p) = K(m) where p € M is called ¢-holomorphic sectional curvature of
M. Thus M is of constant ¢-holomorphic sectional curvature c if the

function H is contant and identically equal to ¢
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Pointwise constante ¢-sectional curvature

The (0,4)-type Riemannian curvature for a pointwise constant ¢-sectional
curvature c as follows

H—|—35

{g(¢Y,02)g(¢X,oW) — g(¢X,¢2)g(4Y, W
(W, X)®(Z,Y) — &(Z,X)o(W, Y)

+20(X, Y)o(W, 2)} — {n(W)n(X)g(sZ,¢Y)
—n(W)n(Y)g(eZ, ¢X) +1(Y)n(Z)g(eW, ¢X)
—(Z2)n(X)g(eW, oY)} (19)

R(X,Y,Z, W)=
H—

where e = Y7 &; (see [7]).
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Let (M,&,n', 6, g) be an indefinite locally conformal S—mani-
fold of pointwise ¢—sectional curvature Kp(7). Then the sectional
curvature Kj(m) on U; satisfies

Ki(m) = )+3 Z (20)

where 7 is any 2—plane {X, $X} orthogonal to D+ = ker¢.

Consequently in each Uy, from the equation (20) the ¢-sectional curvature
is also constant. Since w is closed then after some computations one gets

P(X, Y):Z((f")2+(f")) +Zf’ (hiX,¢Y)

(X, Y)) +Z O(PpX,Y) — g(X,Y)) (21)

Then the following Theorem holds
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Let (M, ¢, &, 1", g) be an indefinite locally conformal S—manifold.
Then the ¢—sectional curvature c is pointwise constant, c € C*°(M), if
and only if the Riemannian (0,4)—type curvature tensor field R is
given by

RIX,Y,Z,W) = —e_Z"[H+ 32?_155 +ei(f')?)
— g(oX,9Z)g(oY,oW)}

H+3E’Z ei(f')? - {¢(W,X)¢(Z,Y)

— O(Z, X)D(W, Y) +20(X, Y)O(W, Z)}

— {n(W)i(X)g(6Z,¢Y)

—n(W)i(Y)g(9Z, 6X) + (Y )n(2)g(eW, ¢X)
—n(Z)n(X)g (¢W ¢Y)}]

- &(X, W)[Z((’”)2 + (£ )’ (Y)n'(2)
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+Zf’ (hiY,pZ) + e 7d(Y, 2))
+§:U o(8Y.2) - 58(Y.2)]
+g(X,Z)[Z((f")2 + (£ )’ (Y)n' (W)
+Zf’ (hiY, W) + e 7d(Y, W))

+Z(f (Y, W) — g(v w))]
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suite theorem

U’ |

— (Y, ) _((F)? + (£ ) (X)m' (W)

i=1

+Zf (hiX, W) + e 7d(X, W))

+Z(f (X, W) —fg(x W)l
+g(Y, WD _((FY + (F)Y ' (X' (2)

i=1

+Zf (hiX,0Z) + e 7d(X, Z))

+Z<f ®(6X,2) - 58X, 2)]

(22)
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Now, we have the following results

Let (M, ¢, &, 1", g) be an Walker locally conformal S—mani-
fold, of pointwise constant ¢—sectional curvature H. The diagonal
enties of the Ricci-curvature matrix and the scalar curvature are given

by

1.
S(E&) = (PR 427 22— () (23)

2.
S(€2,&) = (7" — (PP~ (%) (24)

3.

H+3> 7 (e +ei(f)?) 3H—|—3Zf:1€,-(f")2—5
4 * 4
+(F2 + (FY) + (F)2 + () (25)

S(E]_, E]_) = 6720(
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4.

2 (F1)2 S L (Fi)2 _
5(E27E2) — e20’(H+3Zi:14(.6+51(f) ) . H+3Z’:Z€I(f) £

— 212+ (F1) = 2(F2)? + (F2) (26)

We then deduce the scalar curvature tensor with respect to the basis
{E1, E2,61, &2}

__ 26,20,(/4 + 32,?:15: +¢i(f)?) L HE 32,;25,-(#)2 ) 45l
— F (27)
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